An Omni-directional Kick Engine for Humanoid Robots with Parameter Optimization
نویسندگان
چکیده
Incorporating a dynamic kick engine that is both fast and effective is pivotal to be competitive in one of the world’s biggest AI and robotics initiative: RoboCup. Using the NAO robot as a testbed, we developed a dynamic kick engine that can generate a kick trajectory with an arbitrary direction without prior input or knowledge of the parameters of the kick. The trajectories are generated using cubic splines (two degree three polynomials with a via-point). The trajectories are executed while the robot is dynamically balancing on one foot. When the robot swings the leg for the kick motion, unprecedented forces might be applied on the robot. To compensate for these forces, we developed a Zero Moment Point (ZMP) based preview controller that minimizes the ZMP error. Although a variety of kick engines have been implemented by others, there are only a few papers on how kick engine parameters have been optimized to give an effective kick or even a kick that minimizes energy consumption and time. Parameters such as kick configuration, limit of the robot, or shape of the polynomial can be optimized. We propose an optimization framework based on the Webots simulator to optimize these parameters. Experiments of the physical robot show promising results.
منابع مشابه
Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملInvestigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)
This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...
متن کامل